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Abstract

A model is developed for the mechanical properties of composites containing complex inclusions with no axes of symmetry, e.g. three

dimensional ellipsoids (a1Oa2Oa3) characterized by two aspect ratios, aZa1/a3 and bZa1/a2, by using the Eshelby’s equivalent tensor with

a Mori–Tanaka type model.

The influences of the primary and secondary aspect ratios on the effective elastic moduli of nanocomposites containing aligned isotropic

inclusions are examined. The model is limited to unidirectionally aligned inclusions where both the matrix and the inclusions have linearly

elastic, homogeneous properties. The longitudinal moduli (E11, E22 and E33) and the shear moduli (m12, m13 and m23) are calculated. The

longitudinal Young’s modulus E11 increases, as the primary and secondary aspect ratios increase. However, the transverse Young’s modulus

E22 and shear modulus m12 decrease, as the secondary aspect ratio increases.
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1. Introduction

Composite materials are usually designed to offer the

advantage of high strength and stiffness with light weight.

Many types of reinforced plastics customized for general

purpose uses or high-technical applications have appeared

in recent years. The mechanical properties are widely varied

by the combinations of the kind of polymer matrix and filler

used, such as polypropylene and glass fiber, epoxy resin and

carbon fiber, polyamide and organoclay, etc. For efficient

design and formulation of composites, it is important to

have appropriate theories for the prediction of mechanical

properties, thermal expansion, and other behavior in terms

of the elastic properties of the matrix and filler, the geometry

of the filler particles (or inclusions), and the overall

morphology of the composite.

The various theories for composites usually regard the
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filler particles as spherical, cylindrical, or disc shaped, and

analyze their contributions to properties using the solution

for 2-dimensional problems. In some composites, like

nanocomposites based on exfoliated aluminosilicate plate-

lets from montmorillonite-based organoclays, the particle

shape may be more complex. It would be of interest to

develop theories for composites that appropriately deal with

complex inclusions with no axes of symmetry and that are

possibly irregular in shape. Composites based on such

particles can have properties that are different in all three

coordinate directions and critically dependent on the

alignment achieved during processing.

Our interest in such problems was stimulated by

observations on nanocomposites formed by exfoliation of

aluminosilicate platelets of montmorillonite-based organo-

clays in a polyamide matrix. The transmission electron

microscopy images taken along the flow, transverse and

normal directions of injection-molded specimens in the

report by Yoon and et al. [1] reveal particles with a complex

distribution of shapes; an example is shown in Fig. 1. Using

AFM, direct observations for the individual platy montmor-

illonite particles were reported by Yalcin and Cakmak [2].

These examples clearly indicate that the particles in the
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Fig. 1. TEM photomicrograph of a clay platelet pulled out by microtoming

a polyamide-based nanocomposite formed from exfoliation of aluminosi-

licate platelets of montmorillonite-based organoclays in a polyamide-6

matrix; from Ref. [1].
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matrix may have complicated irregular shapes, which, in

general, may not be well approximated by a single aspect

ratio. The particles in such nanocomposites are most often

thought of as circular disks, but an ellipsoidally shaped disk

may be a better approximation to the in-plane particle shape.

A more general idealized particle shape that has not

received significant attention in the composite literature is

an ellipsoid where all three major axes are different, i.e.

a1sa2sa3, as suggested in Fig. 2. In this paper, we develop

a theoretical analysis of the mechanical properties of

composites containing such three dimensional elliptical

inclusions, where we take a1Oa2Oa3. These particles are

characterized by a primary aspect ratio, aZa1/a3, and a

secondary aspect ratio, bZa1/a2.
 

Fig. 2. Schematic views of a three dimensional ellipsoidal inclusion, where a1Oa2O
a secondary aspect ratio bZa1/a2. Part (a) shows a three dimensional view, whil
2. Background and strategy

Our proposed model containing three-dimensional

ellipsoidal particles combines the Eshelby’s equivalent

tensor with a Mori–Tanaka type model having two aspect

ratios (a and b). The influence of the primary and secondary

aspect ratios on the effective elastic moduli of composites

containing unidirectionally aligned isotropic inclusions will

be examined. It is assumed that the polymer and the

inclusions are well bonded to each other with both having

linearly elastic, isotropic, and homogeneous properties.

Thus, the compatibility between phases is excellent and the

interfacial strength is much larger than the cohesive strength

of polymer matrix. Furthermore, the inclusions are assumed

to be uniformly distributed. If the inclusions are completely

aligned, the composites can be theoretically regarded as

macroscopically homogeneous and transversely isotropic.

Therefore, independent elastic constants of the matrix and

the particles are needed as input data. The goal is to express

the effective elastic moduli of the composite in terms of the

geometry of the inclusions, a and b, and the mechanical

properties of the two phases at various concentrations.

Eshelby [3] combined the eigenstrain with the equivalent

inclusions and solved the elastic stress field in and around an

ellipsoidal particle with an infinite matrix. Variational

principles for solid-elasticity theory have been suggested by

Hashin and Rosen [4] and by Hill [5] to limit the upper and

the lower bounds for the effective mechanical properties of

fiber-reinforced composites by using self-consistent theory.

Many semi-empirical and numerical approaches have

been proposed to predict mechanical properties with aligned

inclusions. A typical example is the Halpin–Tsai equations

[6] which express the mechanical behavior of composites
a3, characterized by two aspect ratios: A primary aspect ratio aZa1/a3 and

e part (b) shows a side view and part (c) shows a front view.
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with unidirectional fiber orientation in terms of simple

equations; a limited number of other shapes have been

described by this approach. Chou et al. [7] applied Hill’s

method to analyze the elastic stiffness of short-fiber

composites. By treating the inclusions and matrix separ-

ately, Russel [8] applied Eshelby’s solution [3] to ellipsoidal

inclusions; in spite of the fact that phase interactions were

neglected, this result provides reasonable predictions at very

dilute concentrations.

For systems with concentrations large enough to include

an adequate number of inclusions within the elastic matrix

but where there is enough distance between inclusions, the

composite problem can be analyzed by combining

Eshelby’s solution [3] with Mori–Tanaka’s average stress

[9]. The main concept of this average stress is that under a

given applied load, the average internal stress in the matrix

is perturbed from the applied one due to the material

containing filler particles with eigenstrains. The total

integration of the localized stress of the perturbed parts

over all the volume occupied by the composite comprised of

the matrix and the particles has to vanish to zero in order to

satisfy the equilibrium conditions. The Mori–Tanaka

method and the nature of its approximation was reformu-

lated and clarified by Benveniste [10]. The explicit

expressions for the components of Eshelby’s tensor were

given by Mura [11] for various types of ellipsoidal

inclusions. Tandon and Weng [12] applied these

expressions to show the effects of inclusion shape or aspect

ratio for the case of unidirectionally aligned flakes or short

fibers. They described the theoretical approach for oblate

and prolate spheroids using a two dimensional analysis of

the five independent elastic constants for a transversely

isotropic composite, i.e. for fiber-like, spherical, and disc-

like inclusions. Calculations of composite properties were

shown over the whole range of aspect ratio from zero to

infinity. Recent papers have discussed the use of such

composite theories to analyze the properties of clay-based

nanocomposites [13,14].

In this paper, we follow the derivation developed by

Tandon and Weng [12] and described by Tucker and Liang

[15] in order to extend the basic theory to show how

particles having two aspect ratios affect mechanical proper-

ties like the moduli and Poisson’s ratio. The theoretical

predictions will be shown as a function of the aspect ratios

under conditions where the primary ratio is larger than the

secondary one.
3. Basic theory

The basic theory needed to develop a model for

composites containing inclusions characterized by two

aspect ratios, specifically ellipsoidal particles without an

axis of rotational symmetry, has been developed and

published by many researchers; however, to our knowledge,

there appear to be no published reports on such an extension
of current theory. The works of Tandon and Weng [12] and

the review paper by Tucker and Liang [15] were especially

useful in the development of the model that follows.

Fig. 3(a) schematically illustrates the elements of the

model to be used in the following analysis; it consists of

oriented ellipsoidal inclusions embedded in an infinite,

elastic matrix. For the ideal condition of uniform surface

traction on the boundary of the composite, consistent

stresses and strains can be defined as shown Fig. 3(b). There

are contributions from both the matrix and the inclusions;

the elastic modulus tensor for the matrix is denoted by Cm,

and that of the perfectly aligned ellipsoidal inclusions is

given by Cf. Generally, the constitutive equations for the

inclusion and matrix material are

sf ZCf3f (1)

sm ZCm3m (2)

The local stress s(x) and the local strain 3(x), which can be

defined in Fig. 3(a) will, in general, not be uniform at the

local position x. The volume–average stress, �s, and strain,
�3, can be determined by integrating the local quantities over

a volume large enough to include an adequate number of

inclusions

�sZ �C �3 (3)

where �C is the effective elastic modulus tensor of the

composite. If the surface traction on the boundaries of the

composite is assumed to be uniform or consistent with

the uniform stress s0 exerted on the surface of the volume,

then the volume–average stress �s can be regarded as a

uniform stress s0 in Fig. 3(b). In the composite, s0 is the

stress of the pure matrix sm. Consequently, the uniform

strain in the homogeneous matrix can be expressed as 3m in

the same way. So the strains of the composite and matrix

material can be related as follows

�sZsm and �3Z 3m (4)

�sZsm ZCm3m (5)

The idea of stress- and strain-concentration tensors, A and

B, was introduced by Hill [17]. They are the requisite

relationships between the average stress for the inclusions

and the corresponding average stress for the composite.

These relationships can be also applied to the average strain

and stress

3f ZA �3 (6)

sf ZB �s (7)

where A and B are the prerequisite fourth-order concen-

tration tensors in the micromechanics of composite material

problems.

In general, the average strain over an adequate system

volume �3 is not exactly equal to 3m due to the presence of



Fig. 3. A composite formed from aligned ellipsoidal inclusions (a1Oa2Oa3) with two aspect ratios.
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inclusions. This problem has to do with the perturbation

strain ~3m, which is the difference between the local strain

and the average strain, and corresponds to an average

perturbed stress denoted by ~sm in the matrix through the

elastic constant Cm, i.e.

�3Z 3m C ~3m (8)

~sm ZCm ~3m (9)

and

�sC ~sm ZCmð3m C ~3mÞ (10)

The inclusions in the composite must have an additional

perturbation strain, ~3f , with the strain 3mC ~3m as follows

�3Z 3m C ~3m C ~3f (11)

The corresponding perturbed stress ~sf can be expressed as

~sf ZCf ~3f (12)

Furthermore, the equivalent transformation strain of the

inclusion, 3t, should be introduced according to Eshelby’s

equivalent principle. The stress equivalence between the

inclusion and the composite may be expressed by

�sC ~sm C ~sf ZCfð3m C ~3m C ~3fÞ

ZCmð3m C ~3m C ~3f K3
tÞ (13)

The stiffness tensor of the matrix Cm was used instead of the

stiffness tensor of the composite �C. This concept was

originally introduced by Mori and Tanaka [9]. Now,

Eshelby’s solution for the ellipsoidal inclusions can be

applied to find the average stress and strain in the inclusions.

Actually, the extra inclusion perturbation is related to the

transformation strain through Eshelby’s tensor which

depends on the geometry of the inclusions; then the

transformation strain tensor of Eq. (13) is assumed to be

related to the Eshelby’s tensor S
~3f Z S3t (14)

The components of Eshelby’s transformation tensor S are

dependent upon the shape of the inclusions, Poisson’s ratio,

and the elastic modulus of the matrix; Mura gave

expressions for inclusions of various geometries [11]. The

appropriate components for inclusions with spherical, fiber-

like and disc-like shapes were used by Tandon and Weng

[12]. In this paper, we used the components for a three

dimensional ellipsoidal shape with complex inclusions with

no axes of symmetry where a1Oa2Oa3.

By requiring the average perturbed stresses over the

matrix and inclusions to go to zero with the applied average

stress �s, we get

~sm Cf ~sf Z 0 (15)

where f is the volume fraction of the inclusions. From Eqs.

(8)–(10) and (13), we obtain the following simple

expression

~sf ZCmð ~3f K3tÞ (16)

From Eqs. (9), (10), (15) and (16), we can rearrange the

average perturbed strain in the matrix in terms of an

arbitrary Cm

~3m ZKfð ~3f K3tÞ (17)

For a given composite system, the average strain of the

composite over its matrix and inclusions, �3 in Eq. (3), is

related to the volume content of inclusions as follows

�3Z 3
m C ~3m Cf ~3f (18)

From Eqs. (17) and (18), we can finally get

�3Z 3m Cf ~3t (19)

The equivalent transformation strain ~3t will have to be found

from the second part of Eq. (13). Next, the average strain �3
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can be calculated by the consistent strain of the pure matrix

3m from Eq. (19).
4. Calculation of 3t
ij

The three dimensional ellipsoidal inclusions with no axes

of symmetry are assumed to be aligned along the directions

x1, x2 and x3 as shown in Fig. 2. The components of

Eshelby’s transformation tensor, Sijkl for this case, can be

written as shown in Appendix A. They are dependent upon

the aspect ratios a and b of the ellipsoidal inclusions and the

Poisson’s ratio of the matrix and can be expressed in terms

of normal and shear components, exclusively. The elliptical

integrals of the first and the second kinds, which are needed

for Eshelby’s tensor for particles of ellipsoidal shape, are

shown in Appendix B.

The fourth-order stiffness tensors of both the matrix,

Cm
ijkl, in Eq. (1) and the inclusions, Cf

ijkl, in Eq. (2) may be

regarded as isotropic materials, respectively, and expressed

by

Cm
ijkl Z lmdijdkl Cmmðdikdjl CdildjkÞ (20)

Cf
ijkl Z lfdijdkl Cmfðdikdjl CdildjkÞ (21)

where lm, mm and lf, mf are the Lame’ constants of the

matrix and inclusions, respectively, and dij is the Kronecker

delta. Eqs. (20) and (21) employ the Einstein summation

convention for a repeated index from 1 to 3.

By use of Eqs. (13), (14) and (17), the equivalent

transformation strain ~3t can be expressed as

Cf
ijkl KCm

ijkl

� �
3m

kl C ð1KfÞSklmn3
t
mn Cf3t

kl

� �
CCm

ijkl3
t
kl Z 0

(22)

Eq. (22) allows us to calculate 3t
kl in terms of known

parameters, such as 3m
kl , f, Cm

ijkl, Cf
ijkl and Sklmn. To express

the fourth-order stiffness tensors as a simplified index, we

introduce the following notation, Cm
IJ from Cm

ijkl.

Cm
ijkl4Cm

IJ (23)

ðijklÞ4 IJ

ðijÞ4 I

ð11Þ41; ð22Þ42; ð33Þ43

ð12ÞZ ð21Þ44; ð13ÞZ ð31Þ45; ð23ÞZ ð32Þ46

The simplified Cm
IJ enables us to visualize the tensor as a

two-dimensional matrix; Eshelby’s tensor and the shear

strain tensor can be expressed in the same way

Cf
IJ KCm

IJ

� �
3m

J C ð1KfÞSJK3
t
K Cf3t

J

� �
CCm

IJ3
t
J Z 0 (24)

Using Eshelby’s tensor for inclusions with an ellipsoid-like

shape from Appendix A with the stiffness tensors of both the
matrix, Cm
IJ , and the inclusions, Cf

IJ , Eq. (24) is rearranged

into the linear simultaneous equations, and are expressed by

the matrix MIJ as follows

MIJ3
t
I ZMI7; ðI and J Z 1; 2;.; 6Þ (25)

M11 M12 M13 0 0 0

M21 M22 M23 0 0 0

M31 M32 M33 0 0 0

0 0 0 M44 0 0

0 0 0 0 M55 0

0 0 0 0 0 M66

2
66666666664

3
77777777775

3t
1

3t
2

3t
3

3t
4

3t
5

3t
6

2
666666666664

3
777777777775

Z

M17

M27

M37

M47

M57

M67

2
6666666664

3
7777777775

(26)

where

M11 ZfD1 CD2 C ð1KfÞðD1S11 CS21 CS31Þ

M12 ZfCD3 C ð1KfÞðD1S12 CS22 CS32Þ

M13 ZfCD3 C ð1KfÞðD1S13 CS23 CS33Þ

M21 ZfCD3 C ð1KfÞðS11 CD1S21 CS31Þ

M22 ZfD1 CD2 C ð1KfÞðS12 CD1S22 CS32Þ

M23 ZfCD3 C ð1KfÞðS13 CD1S23 CS33Þ

M31 ZfCD3 C ð1KfÞðS11 CS21 CD1S31Þ

M32 ZfCD3 C ð1KfÞðS12 CS22 CD1S32Þ

M33 ZfD1 CD2 C ð1KfÞðS13 CS23 CD1S33Þ

M44 ZfC2ð1KfÞS44 C
mm

mf Kmm

M55 ZfC2ð1KfÞS55 C
mm

mf Kmm

M66 ZfC2ð1KfÞS66 C
mm

mf Kmm

M17 ZK D13
m
1 C3

m
2 C3

m
3

� �
M27 ZK 3m

1 CD13
m
2 C3m

3

� �
M37 ZK 3m

1 C3m
2 CD13

m
3

� �
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M47 ZK3m
4 ; M57 ZK3m

5 ; M67 ZK3m
6

and

D1 Z 1C
2ðmf KmmÞ

ðlf KlmÞ

D2 Z
ðlm C2mmÞ

ðlf KlmÞ

D3 Z
lm

lf Klm

The components of the six by six square matrix MIJ consist

of known parameters that can be used to calculate the

equivalent transformation strain 3t
I .

By using an appropriate numerical method, the terms of

Eq. (26) can be solved simultaneously to obtain 3t
I , (IZ1,

2,.,6). We can rewrite Eq. (19) to get the effective strain

( �3Z �3I)

�3I Z 3m
I Cf3t

I (27)

Finally, the effective elastic moduli of the composite can be

calculated from Eqs. (3), (5), (25), and (27). Actually, the

square matrix MIJ in Eq. (26) can be numerically solved as a

three by three matrix.
5. The elastic moduli

Composite materials have six components of moduli

when the isotropic inclusions are aligned along the axis

directions: The longitudinal Young’s modulus E11, the

transverse Young’s moduli E22 and E33, and the shear

moduli m12, m13 and m23. These properties of composites can

be determined from Eq. (26), Eq. (27) and the basic

relationships under appropriate boundary conditions. Fur-

thermore, Poisson’s ratio, n12, can be obtained easily.

5.1. Longitudinal Young’s, modulus E11

In order to calculate E11, the modulus tensor can be

replaced by the compliance tensor, i.e. Eq. (28), to get

�3ij ZCK1
ijkl �skl (28)

or

�3I ZCK1
IJ �sJ (29)

To determine the longitudinal Young’s modulus E11 with

the compliance tensor matrix, CK1
ijkl from Eq. (28), we apply a

longitudinal normal stress �s11 with all other �sijZ0. The

average strain in the x1 direction, �311 of Eq. (28) becomes

�311 ZEK1
11 �s11 (30)

The reference strains of Eq. (1) in the polymer matrix are

3m
11 ZEK1

m �s11 and 3m
22 Z 3m

33 ZKnmEK1
m �s11 (31)
where nm, 3m
11 and Em are the Poisson’s ratio, the strain in the

x1 direction, and Young’s modulus of the polymer matrix,

respectively. Then, from Eqs. (30) and (31), the longitudinal

effective modulus of the composite material E11 becomes

E11 ZEm3
m
11ð�311Þ

K1 (32)

Furthermore, from the above loading condition and the

basic relation given by Eq. (28) for the compliance tensor,

we easily get the equations for the Poisson’s ratios for the

composite, n12 and n13,

�322 ZKn12EK1
11 �s11 (33)

�333 ZKn13EK1
11 �s11 (34)
5.2. Transverse Young’s modulus E22

Similarly, to determine the transverse Young’s modulus

E22 in the x2 direction for composites with the compliance

tensor from Eq. (28), we apply a transverse normal stress �s22

in the x2 direction with all other �sijZ0; the resulting

equation is

�322 ZEK1
22 �s22 (35)

The strains in the x2-direction of polymer matrix are

3m
22 ZEK1

m �s22 and 3m
11 Z 3m

33 ZKnmEK1
m �s22 (36)

Then, in the x2 direction, the transverse effective modulus of

the composite material E22, becomes

E22 ZEm3
m
22ð�322Þ

K1 (37)
5.3. Transverse Young’s modulus E33

Similarly, to determine the x3 direction transverse

Young’s modulus E33 for the composite from Eq. (28)

with the compliance tensor, we apply a transverse normal

stress �s33 in the x3 direction with all other �sijZ0; the

resulting equations are

�333 ZEK1
33 �s33 (38)

The strains in the x3 direction of polymer matrix are

3m
33 ZEK1

m �s33 and 3m
11 Z 3m

22 ZKnmEK1
m �s33 (39)

In the x3 direction, the transverse effective modulus of the

composite material E33 becomes

E33 ZEm3
m
33ð�333Þ

K1 (40)
5.4. Shear moduli m12, m13, and m23

When we apply a pure shear stress �s12 and/or �s21, we can

get the shear modulus m12 by use of the effective strains

obtained from Eqs. (26)–(28). From the compliance tensor

of the composite of Eq. (28), we get the following relation



K.Y. Lee, D.R. Paul / Polymer 46 (2005) 9064–90809070
�312 Z �321 Z ð2m12Þ
K1 �s12 Z ð2m21Þ

K1 �s21 (41)

and for the pure matrix material

3m
12 Z 3m

21 Z ð2mmÞ
K1 �s12 Z ð2mmÞ

K1 �s21 (42)

where mm is the shear modulus of pure matrix material.

From Eqs. (20), (26), (27), (41) and (42), we get

m12

mm

Z 1C
f

2ð1KfÞS44 C
mm

mfKmm

(43)

In the same way, we obtain the shear moduli m13, and m23 as

follows

m13

mm

Z 1C
f

2ð1KfÞS55 C
mm

mfKmm

(44)

m23

mm

Z 1C
f

2ð1KfÞS66 C
mm

mfKmm

(45)
5.5. Poisson’s ratio n12

To determine the Poisson’s ratio n12, we need the same

condition as the longitudinal normal stress �s11 with all other

�sijZ0. As Tucker and Liang suggested in Appendix A of

their paper [15], the Poisson’s ratio, n12 can easily be of

obtained from Eq. (33)

n12 ZK�322$E11$ð �s11Þ
K1 ZK

�322

�311

or
n12

nm

Z �322$E11$ð3
m
22$EmÞ

K1 (46)

and from Eq. (34), we get the Poisson’s ratio, n13. By the

same method, we can get the Poisson’s ratios n21, n23, n31

and n32.
Fig. 4. Flow chart for numerical calculation of the elastic moduli from the

model for a composite containing three dimensional ellipsoidal inclusions.
6. Numerical method

Numerical calculations are executed using the flow chart

shown in Fig. 4. First, the Eshelby’s tensor is assigned with

elliptical functions integrated from 0 to q by Simpson’s

method. Next, the fourth order tensor is lowered to a second

order tensor and becomes a six by six square matrix as

illustrated by Eq. (26). Finally, the Gauss–Jordan method is

used to solve the matrix Mm
IJ , which becomes an augmented

matrix in the numerical method, to get the equivalent

transformation strains 3t
I , (IZ1, 2,. 6). The effective

strains of composites �3I are calculated from Eqs. (19) and

(27). The calculated effective strains of the composite �3I are

expressed by �3ij which are �311; �322; �333; �312; �313; and �323,

according to Eq. (23). The material properties of composites

can be calculated via the relationships of Section 5.
7. Numerical results and discussion

To show the effects of the aspect ratios, a and b and the

volume fraction f of inclusions on the six independent

elastic moduli and Poisson’s ratio, we use the characteristics

of a fully-exfoliated montmorillonite/nylon 6 nanocompo-

site. The material properties of the nylon 6 matrix and the

montmorillonite particles are assumed to be [13]

Em Z 2:75 GPa; nm Z 0:35

Ef Z 178 GPa; nf Z 0:20

The homogeneous Young’s moduli are denoted by Em and

Ef, while the Poisson’s ratios are denoted as nm and nf where
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the subscript (m) refers to the nylon 6 matrix and the

subscript (f) refers to the montmorillonite filler.

First, the schematic views of sphere, disc, and fiber

shaped inclusions are shown in Fig. 5, to define the axes of

the shapes. The limiting cases of the three dimensional

ellipsoidal model of Fig. 2 are a spherical shape where aZ
bZ1 (a1Za2Za3), a disc-like shape (abbreviationZMT-

Disc, i.e. Mori–Tanaka disc) where bZ1 (a1Za2sa3) and

a fiber-like shape (abbreviationZMT-Fiber, i.e. Mori–

Tanaka fiber) where aZb (a1sa2Za3) given by the

Mori–Tanaka model using the Tandon and Weng solution.

The definition of the x1-direction of E11 of the MT-Disc

model in Fig. 5(b) is different from that of Gibbson [16];

here it is defined as the direction with the highest modulus.

The Young’s moduli ratios of E11/Em (in the parallel

direction) and E22/Em (in the perpendicular direction) are

shown as a function of the secondary aspect ratio b (Z
a1/a2) for a primary aspect ratio aZ100 and volume

fraction fZ0.04 in Fig. 6. In the parallel direction, the
Fig. 6. Normalized Young’s modulus, E11/Em in the parallel x1 and

perpendicular x2 directions of a composite material as a function of the

secondary aspect ratio, bZa1/a2, from unity (disc shaped inclusion) to bZ
a (fiber shaped inclusion) for a primary aspect ratio aZ100 and fZ0.04.

Fig. 5. Schematic views of inclusions with the shape of a sphere, disc, and

fiber and their orientation relative to sample axes.
modulus ratio E11/Em goes smoothly from a value of 2.36 of

the disc-like shape of the MT-Disc model (bZ1) to a value

of 3.40 given by the fiber-like shape of the MT-Fiber model

(aZb) in the Tandon and Weng solution, as b goes from 1

to 100. In the perpendicular direction, the modulus ratio of

E22/Em goes smoothly from 2.36 for the disc-like shape to

1.16 for the fiber-like shape as b goes from 1 to 100.

It should be noted that the mathematical form of the

current model leads to numerical difficulties in calculations

in the exact limit of a1Za2 or bZ1 since, the integrands of

the forms for u1 in Appendix A go to infinity at the upper

limit of the integration; of course, the integral itself is finite.

This numerical difficulty can be avoided by use of a series

expansion in this limit. When this numerical difficulty is

eliminated in the manner suggested, the current model

properly extrapolates to the value given by the MT-Disc

model via the Tandon and Weng solution. Likewise, there is

a similar problem at a2Za3 or aZb with the integrand of

the equation for u2 in Appendix A; however, again the

results do approach the values given by MT-Fiber model in

this limit, when this calculational difficulty is eliminated.

The calculated longitudinal Young’s modulus E11 for a

hypothetical nanocomposite composed of nylon 6 and filler

is shown in Fig. 7 as a function of volume fraction of filler

where the secondary aspect ratio varies from 1 to 150 when

the primary aspect ratio is fixed at aZ150. These plots are

quite linear over a wide range of volume fraction; generally



Fig. 7. Normalized Young’s modulus, E11/Em, calculated from current model as a function of volume fraction where the secondary aspect ratio b varies from

unity (disc shaped inclusion) to 150 (fiber shaped inclusion). The two extremes correspond to the Mori–Tanaka, MT, model for discs and fibers.
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speaking, the volume fraction of montmorillonite in such

nanocomposites would rarely be above 0.05. The modulus

ratio E11/Em increases as the secondary aspect ratio

increases; however, the rate of increase becomes less as

the secondary aspect ratio increases. Note that for bZ128

the modulus ratio is essentially the same as the value for the

MT-Fiber where aZbZ150.

The longitudinal Young’s modulus ratio E11/Em is shown

in Fig. 8 as a function of the primary aspect ratio a (Za1/a3)

for a given volume fraction fZ0.04 and different values of

the secondary aspect ratio b(Za1/a2). The current model is

also compared with the MT-Disc, MT-Fiber, and Halpin–
Fig. 8. Effect of the secondary aspect ratios on the longitudinal Young’s modulus, E

Tsai model (HT) and the Mori–Tanaka models for fibers (MT-Fiber) and discs

75 GPa.
Tsai (abbreviationZHT) models in Fig. 8. Increasing the

secondary aspect ratio increases E11/Em, for a given a, from

the lower limit of the MT-Disc model (bZ1); but at bZ6,

the highest value shown, the modulus ratio is still below the

prediction given by the Halpin–Tsai and, of course, the MT-

Fiber limit (aZb).

Fig. 9 shows the calculated Young’s moduli in the three

coordinate directions, i.e. E11, E22, and E33, relative to that

of the matrix for the composite as a function of the primary

aspect ratio where the secondary aspect ratio is set to bZ3

for a volume fraction fZ0.04. The results are compared

with the HT model, MT-Fiber, and MT-Disc models. For all
11/Em, calculated from the current model and comparisons with the Halpin–

(MT-Disc) at a volume fraction fZ0.04 where EfZ178 GPa and EmZ2.



Fig. 9. Comparison of 3-dimensional ellipsoidal model with Halpin–Tsai model (HT) and Mori–Tanaka models for fibers (MT-Fiber) and discs (MT-Disc) as a

function of the primary aspect ratio, a, for a fixed secondary aspect ratio bZ3, volume fraction, fZ0.04, EfZ178 GPa and EmZ2.75 GPa.
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primary aspect ratios, the predicted longitudinal Young’s

modulus, E11, from the current model is greater than that

predicted by the MT-Disc model but less than that predicted

by the MT-Fiber model as shown in Fig. 8.

The transverse Young’s modulus E22 predicted by the

current model, with bZ3, is less than E11 from the MT-Disc

model. The rate of increase for both curves is similar, as if

one curve could be shifted to coincide with the other; of

course, the deviations between the two curves are dependent

upon the secondary aspect ratio (bZ3). The most relevant

aspect ratio for the transverse Young’s modulus, or E22, is

a/b or a2/a3, in Fig. 9, a/bZa/3. The transverse modulus

ratio predicted by the current model is approximately the

same as the longitudinal modulus, or E11, ratio predicted by

the Mori–Tanaka Disc model with an aspect ratio of a/3 (i.e.

a/b); e.g. the transverse modulus ratio E22/Em is 1.732 at

aZ106.5 from the current model (with bZ3), while E11/Em

is 1.752 at aZ35.5 from the MT-Disc model, see Fig. 9.

Clearly, the transverse Young’s modulus E22 predicted by

the current model strongly depends on a/b or a2/a3. The

Young’s modulus in the third coordinate direction, E33, as

predicted by the current model increases similarly to E11 or

E22; however, the magnitude of the increase is much less as

shown in Fig. 9.

The calculated longitudinal Young’s modulus of the

composite E11, relative to that of the matrix, is shown in

Fig. 10 as a function of the volume fraction for the case

where the primary aspect ratio a is 10, 25, 100 and 500 with

b fixed at 3 and where the secondary aspect ratio b is 1.5, 3

and 6 with the primary aspect ratio a fixed at 25. In this

figure, the curves are drawn over the entire volume fraction

range from 0 to 1 to show the non-linear nature of the

relations at higher loadings or the inefficiency of the filler

for providing reinforcement at low loading; of course,
loadings beyond some point become experimentally

difficult to form and eventually impossible because of

theoretical packing limits for a dispersed phase. In all cases,

the modulus, at a given filler content, increases as the

primary and secondary aspect ratios, a and b increase.

The effect of the secondary aspect ratio, b, on the

calculated longitudinal Young’s modulus of the composite,

E11, is shown more clearly in Fig. 11 by plotting the

modulus ratio versus the secondary aspect ratio b from bZ1

to bZa for fixed values of the primary aspect ratio, a, from

aZ25 to aZ1600 at a volume fraction fZ0.04. The limits

for a sphere (the point where aZbZ1), disc (the bold line

along which bZ1), and fiber (the bold line along which aZ
b) shaped inclusions are shown in this presentation. The

modulus always increases as the secondary aspect ratio, b,

increases at a fixed primary aspect ratio. To illustrate this,

for aZ50, the modulus ratio increases from 1.934 to 3.102

as b goes from bZ1 to bZ50. On the other hand, for bZ1

and aZ400 (MT-Disc model) the modulus ratio is 3.092,

while for bZa and aZ50 (MT-Fiber model) this ratio is

nearly identical at 3.102. In more extreme cases, the

modulus at a low primary aspect ratio, a, may be larger than

that at a higher a due to the change of the secondary aspect

ratio, b. Clearly, the secondary aspect ratio can have a

considerable effect on the modulus E11 as shown in Figs. 10

and 11 and these examples.

The calculated transverse Young’s modulus of the

composite E22, relative to that of the matrix is shown in

Fig. 12 over the entire range of volume fractions for the

following cases: aZ10, 25, 100 and 500 with b fixed at 3

and bZ1.5, 3 and 6 with a fixed at 25. The transverse

Young’s modulus E22 increases as the primary aspect ratio

increases in a similar manner shown above for E11. However,

E22 decreases as the secondary aspect ratio increases. An



Fig. 10. Normalized longitudinal Young’s modulus, E11/Em, predicted by the current model as a function of primary aspect ratio a and secondary aspect ratio b

where EfZ178 GPa and EmZ2.75 GPa.
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increase in the secondary aspect ratio, bZa1/a2, for a fixed

primary aspect ratio, aZa1/a3, means the length a2 of

inclusion in the x2 direction must decrease for a fixed length

a3. Thus, the decreasing behavior of E22 with increasing b is

physically understandable.

The relative transverse Young’s modulus E22 of

composites is shown in Fig. 13 as a function of secondary

aspect ratio for fixed values of the primary aspect ratio and

volume fraction fZ0.04 in analogous fashion as shown in

Fig. 11 for E11. Again, the limits for sphere, disc, and fiber

shaped inclusions are shown. The transverse modulus

decreases as the secondary aspect ratio b increases for a
Fig. 11. Normalized longitudinal Young’s modulus, E11/Em, as a function of the s

shaped inclusion) for various fixed primary aspect ratios.
fixed primary aspect ratio a, e.g. at a primary aspect ratio

aZ50, the modulus ratio decreases from 1.934 to 1.158 as

the secondary aspect ratio increases from bZ1 to bZaZ
50. The trend for E11 is the reverse of this.

From Fig. 12, we can get a sense of how the transverse

modulus depends on the aspect ratio a2/a3Za/b. At fZ
0.10, for aZ25 and bZ1.5 or a/bZ16.67, the modulus

ratio is 2.108 and at aZ100 and bZ6 or a/bZ16.67, the

modulus ratio is 2.109. The modulus ratios for these two

cases, where a2/a3Za/b are the same, are virtually

identical. In some cases, it is useful to use the alternate

aspect ratio, a2/a3Za/b, as shown for the plot of transverse
econdary aspect ratio, b, from unity (disc shaped inclusion) to bZa (fiber



Fig. 12. Normalized transverse Young’s modulus, E22/Em, predicted by the current model as a function of the primary aspect ratio a and the secondary aspect

ratio b where EfZ178 GPa and EmZ2.75 GPa.
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Young’s modulus ratio E22/Em in Fig. 14. Here the

reinforcement effect is shown as a function of the aspect

ratio a/b for cases where the primary aspect ratios are 50,

500 and 5000 for a volume fraction fZ0.04; the three

curves essentially collapse into one curve in Fig. 14 when

plotted in this way. In other words, the modulus ratio E22/Em

can be approximately expressed in terms of the single aspect

ratio, a/b, in this region as shown in Fig. 14; whereas, in

Fig. 13 two aspect ratios have to be specified to define the

material properties in the x2 direction.

The transverse Young’s modulus of the composite E33,

relative to that of the matrix, calculated from the current

model is shown in Fig. 15 as a function of the volume
Fig. 13. Normalized transverse Young’s modulus, E22/Em, as a function of

the secondary aspect ratio from unity (disc shaped inclusion) to bZa (fiber

shaped inclusion) for various fixed primary aspect ratios.
fraction of inclusions. The effects of the aspect ratios a and

b on the transverse Young’s modulus E33 are almost

negligible and consistent with what is seen in Fig. 9.

The calculated shear modulus of the compositem12, relative

to the matrix shear modulus is shown in Fig. 16 as a function of

the filler volume fraction for the cases aZ10, 25, 100 and 500

with b fixed at 3 and bZ1.5, 3 and 6 with a fixed at 25. Note

that m12 describes the response of the composite to a shear

stress in the x2 direction acting in a plane of the normal vector

of the x1 direction and is identical to m21. The effects of aspect

ratios on the shear modulusm12 are similar to the effects on E22.

The shear modulus m12 increases as the primary aspect ratio a

increases, while it decreases as the secondary aspect ratio b

increases. In Fig. 16, the shear moduli m12 given by the curve

defined by the open-circles whereaZ10 andbZ1.5 are larger

than those given by the curve defined by the closed-squares

where aZ25 and bZ6 in Fig. 16. Analogous trends are seen

in Fig. 12.

The shear modulus of composites m12 relative to that of

the matrix is shown in Fig. 17 as a function of secondary

aspect ratio for fixed values of the primary aspect ratio and a

volume fraction fZ0.04. The limiting cases for sphere,

disc, and fiber shaped inclusions are shown in analogous

fashion as in Figs. 11 and 13. The shear modulus decreases

as the secondary aspect ratio b increases for a fixed primary

aspect ratio a as also seen for the transverse Young’s

modulus E22.

As shown earlier for E22, the shear modulus of

composites m12 can be expressed approximately as a unique

function of the alternate aspect ratio a/b as shown in Fig. 14.

As before, the curves for the primary aspect ratios of 50, 500

and 5000 at a volume fraction fZ0.04 approximately

collapse into a single function of a/b.



Fig. 14. Transverse Young’s modulus E22 and shear modulus, m12, versus a/bZa2/a3 with the constant primary aspect ratios of aZ50, 500 and 5000.
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The calculated shear moduli of the composite m13 and

m23, relative to that of the matrix, are shown in Figs. 18 and

19, respectively, as a function of the volume fraction for

various combinations of a and b. Both shear moduli show

similar trends; they decrease with increasing primary aspect

ratio a but increase with increasing secondary aspect ratio b.

The effects of aspect ratios on these shear moduli are

relatively small compared with the effects on m12.

The Poisson’s ratio calculated for the composite n12, as

defined by Eq. (46) is shown in Fig. 20 as a function of the

primary aspect ratio, with b fixed at 3, for various fixed

volume fractions. Note that n12 is defined as the negative
Fig. 15. Normalized transverse Young’s modulus, E33/Em, predicted by the curren

ratio b where EfZ178 GPa and EmZ2.75 GPa.
ratio of the strain in the x2 direction to the strain in the

direction of the applied load, i.e. x1 direction. This Poisson’s

ratio decreases as aspect ratio increases and as the volume

fraction of the filler increases and approaches that of filler,

nfZ0.20, at high loadings and aspect ratios. These results

are similar to those of Tandon and Weng [12].
8. Conclusion

A model for the mechanical properties of a composite

consisting of perfectly aligned ellipsoidal particles having
t model as a function of the primary aspect ratio a and the secondary aspect



Fig. 16. Normalized shear modulus, m12/mm, calculated from the current model as a function of concentration where mfZ74.2 GPa and mmZ1.02 GPa.
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no axis of rotational symmetry has been developed. The

effects of the primary and secondary aspect ratios, a and b,

on various moduli calculated by the current model, are

compared with the predictions by the theoretical approaches

of Halpin–Tsai and Mori–Tanaka. The current model

permits predictions that correctly approach the limiting

cases for a sphere (where aZbZ1), disc (where bZ1), and

fiber (where aZb) shaped inclusions. The longitudinal

Young’s modulus E11 increases as both the primary and

secondary aspect ratios increase. The E11 predicted by the

current model increases from that of the MT-Disc model to

that of the MT-Fiber model, as the secondary aspect ratio

increases.
Fig. 17. Normalized shear modulus, m12/mm, as a function of the secondary

aspect ratio from unity (disc shaped inclusion) to bZa (fiber shaped

inclusion) for various fixed primary aspect ratios.
However, the transverse Young’s modulus E22 decreases,

as the secondary aspect ratio increases. The results can be

approximately expressed as a function of the alternate

aspect ratio a/b or a2/a3. The shear modulus of composites

m12 shows a similar trend as the transverse Young’s modulus

E22.
Appendix A. Components of Eshelby’s tensor Sijkl

The components of Eshelby’s tensor for a three

dimensional ellipsoidal model that appropriately deals

with complex inclusions with no axes of symmetry and

are possibly irregular in shape can be derived from the

explicit expressions of Mura [11]. For the ellipsoidal

inclusion of the current model (a1Oa2Oa3), where there

are two different aspect ratios a and b, the components of

Eshelby’s tensor Sijkl are given by

S1111 Z
3J11

8pð1KvmÞ
C

ð1K2vmÞu1

8pð1KvmÞ

S1122 Z
J21

8pð1KvmÞ
K

ð1K2vmÞu1

8pð1KvmÞ

S1133 Z
J31

8pð1KvmÞ
K

ð1K2vmÞu1

8pð1KvmÞ

S2211 Z
J12

8pð1KvmÞ
K

ð1K2vmÞðu2 Ku1Þ

8pð1KvmÞ

S2222 Z
3J22

8pð1KvmÞ
C

ð1K2vmÞðu2 Ku1Þ

8pð1KvmÞ



Fig. 18. Normalized shear modulus ratio, m13/mm, predicted by the current model as a function of concentration where mfZ74.2 GPa and mmZ1.02 GPa.
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Fig. 19. Normalized shear modulus ratio, m23/mm, predicted by the current model
S1313 Z S3113 Z S1331 Z S3131

Z
ðJ13 CJ31Þ

16pð1KvmÞ
K
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K
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In the above, nm is Poisson’s ratio of the polymer matrix,

and the terms Jij are given by

J12 Z
b2ðu2 K2u1Þ

ðb2 K1Þ
as a function of volume fraction where mfZ74.2 GPa and mmZ1.02 GPa.



Fig. 20. Effects of the primary aspect ratio on the Poisson’s ratio, n12, with secondary aspect ratio bZ3 where Poisson’s ratios of the matrix nmZ0.35 and the

filler nfZ0.2.
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J13 Z
a2ð4pKu1 Ku2Þ

ða2 K1Þ

3J11 Z 4pKJ12 KJ13

J21 Z
ðu2 K2u1Þ

ðb2 K1Þ

J23 Z
a2ð4pK2u2 Cu1Þ

ða2 Kb2Þ

3J22 Z 4pKJ21 KJ23
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ð4pKu1 Ku2Þ

ða2 K1Þ

J32 Z
b2ð4pK2u2 Cu1Þ

ða2 Kb2Þ

3J33 Z 4pKJ31 KJ32

where a is the primary aspect ratio of the inclusionZa1/a3,

and b is the secondary aspect ratioZa1/a2. The quantities

a1, a2, and a3 describe the dimensions of the ellipsoidal

shape of the inclusions in the directions 1, 2, and 3,

respectively. The parameters, u1 and u2 are given by

u1 Z
4pb

ðb2 K1Þða2 K1Þ1=2
½FðKÞKEðKÞ�

u2 Z 4pK
4pa2

ða2 Kb2Þ
C

4pa2bEðKÞ

ða2 Kb2Þða2 K1Þ1=2

where F(K) and E(K) are the complete elliptical integrals of

the first and the second kinds, respectively. Details are given

in Appendix B.

When the primary aspect ratio of the inclusions is much
larger than the secondary aspect ratio and much larger than

1, the above equations can be compactly expressed as

follows

u1 Z
4pb

aðb2 K1Þ
½FðKÞKEðKÞ�

u2 Z
4pbEðKÞ

a

Appendix B. Elliptical integrals of the first and the

second kinds

The elliptical integrals are well-known, and can be found

in the WIKIPEDIA (The Free Encyclopedia) at internet site

of http://en.wikipedia.org/.
B.1. Complete elliptical integral of the first kind

The elliptical integral of the first kind F(q, K) is

expressed as follows

Fðq;KÞZ

ðq
0
ð1KK2sin2fÞK1=2df

qZ sinK1 1K
a2

3

a2
1

� �1=2

K2 Z
a2

1 Ka2
2

� �
a2

1 Ka2
3

� �
It is not easy to calculate F(q, K) analytically, but this can be

done numerically using Simpson’s integral method. At qZ
p/2, F(q, K) can be expressed as follows

http://www.elsevier.com/locate/polymer
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When q is p/2 and K2 is almost 1 (i.e. aZb), it can be

calculated without error using the polynomial series

equation
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B.2. Complete elliptical integral of the second kind

The elliptical integral of second kind E(q,K) means the

perimeter of ellipsoid and can be expressed as follows

Eðq;KÞZ

ð
q

0
ð1KK2sin2fÞ1=2df

It is also calculated by Simpson’s integral method.
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p

2
;K

� �
Z

ðp=2
0
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At qZp/2, E(q,K) can also be simply calculated in terms of

the polynomial series as follows
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